Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Mol Sci ; 24(13)2023 Jul 02.
Article En | MEDLINE | ID: mdl-37446191

Cholesterol is essential for cellular function and is stored as cholesteryl esters (CEs). CEs biosynthesis is catalyzed by the enzymes acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), with ACAT1 being the primary isoenzyme in most cells in humans. In Alzheimer's Disease, CEs accumulate in vulnerable brain regions. Therefore, ACATs may be promising targets for treating AD. F12511 is a high-affinity ACAT1 inhibitor that has passed phase 1 safety tests for antiatherosclerosis. Previously, we developed a nanoparticle system to encapsulate a large concentration of F12511 into a stealth liposome (DSPE-PEG2000 with phosphatidylcholine). Here, we injected the nanoparticle encapsulated F12511 (nanoparticle F) intravenously (IV) in wild-type mice and performed an HPLC/MS/MS analysis and ACAT enzyme activity measurement. The results demonstrated that F12511 was present within the mouse brain after a single IV but did not overaccumulate in the brain or other tissues after repeated IVs. A histological examination showed that F12511 did not cause overt neurological or systemic toxicity. We then showed that a 2-week IV delivery of nanoparticle F to aging 3xTg AD mice ameliorated amyloidopathy, reduced hyperphosphorylated tau and nonphosphorylated tau, and reduced neuroinflammation. This work lays the foundation for nanoparticle F to be used as a possible therapy for AD and other neurodegenerative diseases.


Alzheimer Disease , Humans , Mice , Animals , Mice, Transgenic , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Liposomes , Tissue Distribution , Tandem Mass Spectrometry , Acetyl-CoA C-Acetyltransferase/metabolism
2.
Cancer Med ; 12(12): 13100-13110, 2023 06.
Article En | MEDLINE | ID: mdl-37148554

BACKGROUND: Sunitinib is a multi-target tyrosine kinase inhibitor (TKI) that inhibits VEGF receptor 1, 2, 3 (VEGFRs), platelet-derived growth factor receptor (PDGFR), colony-stimulating factor receptor (CSFR), and the stem cell factor receptor c-KIT. Temsirolimus inhibits mammalian target of rapamycin (mTOR) through binding to intracellular protein FKBP-12. Both agents are approved for the treatment of metastatic renal cell carcinoma (mRCC), have different anticancer mechanisms, and non-overlapping toxicities. These attributes form the scientific rationale for sequential combination of these agents. The primary objective of the study was to investigate the efficacy of alternating sunitinib and temsirolimus therapy on progression-free survival (PFS) in mRCC. METHODS: We undertook a phase II, multi-center, single cohort, open-label study in patients with mRCC. Patients were treated with alternating dosing of 4 weeks of sunitinib 50 mg PO daily, followed by 2 weeks rest, then 4 weeks of temsirolimus 25 mg IV weekly, followed by 2 weeks rest (12 weeks total per cycle). The primary endpoint was PFS. Secondary endpoints included clinical response rate and characterization of the toxicity profile of this combination therapy. RESULTS: Nineteen patients were enrolled into the study. The median observed PFS (n = 13 evaluable for PFS) was 8.8 months (95% CI 6.8-25.2 months). Best responses achieved were five partial response, nine stable disease, and three disease progression according to RECIST 1.1 guidelines (two non-evaluable). The most commonly observed toxicities were fatigue, platelet count decrease, creatinine increased, diarrhea, oral mucositis, edema, anemia, rash, hypophosphatemia, dysgeusia, and palmar-plantar erythrodysesthesia syndrome. CONCLUSION: Alternating sunitinib and temsirolimus did not improve the PFS in patients with mRCC.


Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Kidney Neoplasms/pathology , Pyrroles/therapeutic use , Sirolimus/therapeutic use , Sunitinib/therapeutic use
3.
Br J Clin Pharmacol ; 89(3): 1027-1035, 2023 03.
Article En | MEDLINE | ID: mdl-36164710

AIM: Metformin is used for the management of type 2 diabetes mellitus (T2DM) and is being tested clinically as an anticancer agent. Metformin concentrations safely achievable in human solid tissues including tumours are unknown. This study was designed to determine metformin concentration in tissue compartments as a function of dose to inform rational dosing in preclinical models and interpretation of clinical results." METHODS: Subjects with solid tumours to be treated by resection and either (A) willingness to take metformin for 7-10 days before surgery or (B) taking metformin for T2DM were eligible. Whole blood, plasma, tumour, tumour-adjacent uninvolved tissue and subcutaneous adipose tissue were obtained for liquid chromatography with tandem mass spectrometry to measure metformin concentrations. RESULTS: All subjects had primary lung tumours. Metformin dose was significantly correlated with drug concentrations in all tissues analysed. Intersubject metformin concentrations varied by over two orders of magnitude. Metformin concentrations were significantly higher in tumour tissues and lower in adipose tissues compared to other tissues. Concentrations in blood and plasma were significantly correlated with concentrations in solid tissues. CONCLUSION: Metformin accumulates in cellular compartments. Concentrations observed in plasma, blood, lung and tumour tissues in subjects treated with US Food and Drug Administration-approved doses for T2DM are lower than those typically used in tissue culture studies. However, such tissue concentrations are in line with those found within cultured cells treated with supra-pharmacological doses of metformin. Given the large intersubject variability in metformin concentrations, it is imperative to determine whether there is an association between tissue metformin concentration and anticancer activity in humans.


Diabetes Mellitus, Type 2 , Lung Neoplasms , Metformin , Humans , Diabetes Mellitus, Type 2/drug therapy , Adipose Tissue , Lung Neoplasms/drug therapy , Plasma , Hypoglycemic Agents
5.
Obesity (Silver Spring) ; 29(2): 337-349, 2021 02.
Article En | MEDLINE | ID: mdl-33491319

OBJECTIVE: The aryl hydrocarbon receptor (AHR) plays a key role in obesity. In vitro studies revealed that the tryptophan metabolite kynurenine (Kyn) activates AHR signaling in cultured hepatocytes. The objective of this study was to determine whether Kyn activated the AHR in mice to induce obesity. METHODS: Mice were fed a low-fat diet and the same diet supplemented with Kyn. Body mass, liver status, and the expression of identified relevant genes were determined. RESULTS: Kyn caused mice to gain significant body mass, develop fatty liver and hyperglycemia, and increase expression levels of cytochrome P450 1B1 and stearoyl-CoA desaturase 1. The hyperglycemia was accompanied with decreased insulin levels, which may have been due to the repression of genes involved in insulin secretion. Kyn plasma concentrations and BMI were measured in female patients, and a significant association was observed between Kyn and age in patients with obesity but not in patients who were lean. CONCLUSIONS: Results show that (1) Kyn or a metabolite thereof is a ligand responsible for inducing AHR-based obesity, fatty liver, and hyperglycemia in mice; (2) plasma Kyn levels increase with age in women with obesity but not in lean women; and (3) an activated AHR is necessary but not sufficient to attain obesity, a status that also requires fat in the diet.


Fatty Liver/metabolism , Hyperglycemia/chemically induced , Kynurenine/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Weight Gain/drug effects , Animals , Liver/drug effects , Mice , Signal Transduction/drug effects
6.
Br J Clin Pharmacol ; 87(3): 1291-1302, 2021 03.
Article En | MEDLINE | ID: mdl-32736411

AIMS: We evaluated the potential effect of sonidegib at an oral dose of 800 mg once daily (QD) on the pharmacokinetics (PK) of the probe drugs warfarin (CYP2C9) and bupropion (CYP2B6). METHODS: This was a multicentre, open-label study to evaluate the effect of sonidegib on the PK of the probe drugs warfarin and bupropion in patients with advanced solid tumours. Cohort 1 patients received a single warfarin 15-mg dose on Day 1 of the run-in period and on Cycle 2 Day 22 (C2D22) of sonidegib administration. Cohort 2 patients received a single bupropion 75-mg dose on Day 1 of run-in period and on C2D22 of sonidegib administration. Sonidegib 800 mg QD oral dosing began on Cycle 1 Day 1 of a 28-day cycle after the run-in period in both cohorts. RESULTS: The geometric means ratios [90% confidence interval] for (S)-warfarin with and without sonidegib were: area under the concentration-time curve from time 0 to infinity (AUCinf ) 1.15 [1.07, 1.24] and maximum plasma concentration (Cmax ) 0.88 [0.81, 0.97]; and for (R)-warfarin were: AUCinf 1.10 [0.98, 1.24] and Cmax 0.93 [0.87, 1.0]. The geometric means ratios [90% confidence interval] of bupropion with and without sonidegib were: AUCinf 1.10 [0.99, 1.23] and Cmax 1.16 [0.95, 1.42]. Sonidegib 800 mg had a safety profile that was similar to that of lower dose sonidegib 200 mg and was unaffected by single doses of the probe drugs. CONCLUSIONS: Sonidegib dosed orally at 800 mg QD (higher than the Food and Drug Administration-approved dose) did not impact the PK or pharmacodynamics of warfarin (CYP2C9 probe substrate) or the PK of bupropion (CYP2B6 probe substrate).


Neoplasms , Warfarin , Administration, Oral , Area Under Curve , Biphenyl Compounds , Bupropion/therapeutic use , Drug Interactions , Humans , Neoplasms/drug therapy , Pyridines
7.
Clin Cancer Res ; 26(14): 3707-3719, 2020 07 15.
Article En | MEDLINE | ID: mdl-32321715

PURPOSE: Despite adjuvant endocrine therapy for patients with estrogen receptor alpha (ER)-positive breast cancer, dormant residual disease can persist for years and eventually cause tumor recurrence. We sought to deduce mechanisms underlying the persistence of dormant cancer cells to identify therapeutic strategies. EXPERIMENTAL DESIGN: Mimicking the aromatase inhibitor-induced depletion of estrogen levels used to treat patients, we developed preclinical models of dormancy in ER+ breast cancer induced by estrogen withdrawal in mice. We analyzed tumor xenografts and cultured cancer cells for molecular and cellular responses to estrogen withdrawal and drug treatments. Publicly available clinical breast tumor gene expression datasets were analyzed for responses to neoadjuvant endocrine therapy. RESULTS: Dormant breast cancer cells exhibited upregulated 5' adenosine monophosphate-activated protein kinase (AMPK) levels and activity, and upregulated fatty acid oxidation. While the antidiabetes AMPK-activating drug metformin slowed the estrogen-driven growth of cells and tumors, metformin promoted the persistence of estrogen-deprived cells and tumors through increased mitochondrial respiration driven by fatty acid oxidation. Pharmacologic or genetic inhibition of AMPK or fatty acid oxidation promoted clearance of dormant residual disease, while dietary fat increased tumor cell survival. CONCLUSIONS: AMPK has context-dependent effects in cancer, cautioning against the widespread use of an AMPK activator across disease settings. The development of therapeutics targeting fat metabolism is warranted in ER+ breast cancer.


AMP-Activated Protein Kinases/metabolism , Aromatase Inhibitors/pharmacology , Breast Neoplasms/therapy , Cell Survival/drug effects , Metformin/pharmacology , Animals , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemotherapy, Adjuvant/methods , Estrogens/biosynthesis , Female , Humans , Metformin/therapeutic use , Mice , Neoadjuvant Therapy/methods , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
...